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Magnetic fluctuations in the Earth’s magnetosheath
1st observation of mirror waves [Hubert et al. 1989] and studies 
of Alfvén Ion Cyclotron (AIC) waves and mirror mode 
[Lacombe et al. 1990, 1992, 1995; Lacombe & Belmont 1995]

Schéma de [Schmid et al., 2020] 
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Magnetic fluctuations in magnetosheath with Cluster

AIC [Alexandrova et al., JGR, 2004]
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Alfven vortex: downstream of the Earth’s bow shock
(first observation in space plasmas)

dDt = kDt13 ! (Dt14 + Dt43)k; see the last column of
Table 1. In these cases, the same magnetic structures are
most probably observed by the satellites C1, C3, and C4
and we can study their 3-D geometry.
[35] As one can see from Table 1, the delay Dt34 varies

between 2.1 s and 2.5 s. As discussed above, a plane wave
packet travelling strictly parallel to B0 should be observed
simultaneously on C3 and C4, which have a separation
vector approximately perpendicular to B0. Even if the wave
vector makes an angle of "10! with B0 (see section 3.1), the
satellites C3 and C4 should observe the same signal with a
time delay of order 0.3 s, an order of magnitude smaller that
the observed Dt34. Therefore the magnetic structure of the
energetic peaks 1–3, 5, and 6 is not that of a plane wave
packet but is localized in the plane perpendicular to B0.
[36] We see in Table 1 that the correlation R13 between

the signals measured on C1 and C3 is larger than R14 and
R34. As the separation vector between C1 and C3 is nearly
along the mean magnetic field, the coherent magnetic
structures are roughly uniform along B0, at least on scales
of the order of the Cluster separation, 600 km.
[37] Thus the analysis of the time delays between the

Cluster spacecraft indicates that the energetic peaks of
Figure 2c correspond to magnetic coherent structures
aligned with B0 and localized in the plane perpendicular
to B0 with a cross section smaller than the distance between
C3 and C4. In the following analysis we assume that the
cross section is nearly circular. It could be elliptical as well,
but with only four satellites not much more could be
deduced.
3.2.2. Propagation Speed
[38] With the four Cluster satellites it is possible to

determine the velocity V and the direction of propagation
n of a locally planar structure moving with a constant speed
in the satellite frame [Schwartz, 1998]

D1i #
n

V ¼ Dt1i; i ¼ 2; 3; 4: ð14Þ

Here D1i = Di ! D1 is a separation vector between the
satellites C1 and Ci, Dt1i is a temporal delay between
measurements on these two satellites. This method, based
on time and space separations, is called the timing method.
Actually, the timing method keeps its validity (see
Appendix B) for cylindrical structures when the following
conditions are satisfied: (1) four satellites observe similar
signals; (2) the maxima of the six correlation functions Rij

(with i = 1, 3 and j = 2, 4) and the corresponding time delays
are well defined; (3) the relation (12) is verified for all
triplets of satellites.
[39] The timing method can therefore be applied to the

coherent structures corresponding to the energetic peaks.

However, only three (2, 3, and 6) among the five localized
structures of Table 1, satisfy the conditions of applicability
of the timing method. For these three events Table 2
presents the time delays between the six satellite pairs.
One can see indeed that the relation (12) is verified for all
triplets of satellites, indicating that these events are observed
by the four satellites. The fact that the other events are not
observed by the four satellites is consistent with their space
localization.
[40] As an example, Figure 6 shows the waveforms for

the event number 3. Here the magnetic fluctuations mea-
sured on C2, C3, and C4 are shifted with respect to the ones
observed on C1 by the corresponding time delays Dt1i, i =
2–4, and one can see directly that the four satellites observe
the same event.
[41] The velocities V obtained by the timing method (and

the corresponding error dV) for the structures 2, 3, and 6 are
given in Table 3. To obtain dV, we have taken into account
the fact that the satellite separations are determined with an
error of 1% [Credland et al., 1997] and estimated the error
on the time delays using the largest deviations about the
coherency condition (12). The last line of the table gives the
plasma bulk velocity, which is known with a 10% precision
[Rème et al., 2001]. All velocities in this table are projected

Table 2. Time Lags for the Three Events Observed by All Cluster
Satellitesa

Event t0, UT Dt12 Dt13 Dt14 Dt23 Dt24 Dt34

2 1702:50 1.29 !1.48 0.78 !2.77 !0.55 2.27
3 1703:11 1.68 !1.52 0.78 !3.16 !0.90 2.23
6 1705:30 !0.47 !1.33 1.21 !0.82 1.68 2.50
aAll the time delays are measured in seconds.

Figure 6. Superposition of magnetic field fluctuations
observed around 1703:11 UT by all the Cluster satellites. In
the four panels the energy and the three components of the
magnetic fluctuations are shown for a 13 s time period,
different line styles indicate different satellites, as shown in
the bottom panel.
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Vector potential, A, ~ to stream function Þ field lines || stream lines & 
current || vorticity [Petviashvilli & Pokhotelov, 1992]

Alfven vortices ~ 2D incompressible HD vortices

Monopole ~ force free 
current, standing structure

Dipole ~ two inversed 
currents, propagates 
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can correspond to a mirror mode. At the same time, within

the range of the Alfvén vortices [0.5, 2.0]Hz, S✓/S decreases
to a negligibly small value 0.03, reflecting the incompress-

ible nature of the vortices. It seems that the appearance of

the Alfvén vortices in a finite beta plasma (here ⇥⌥1) makes
it incompressible within the vortices. A statistical study over

⌥30 magnetosheath samples shows (i) a systematic decrease
of S✓/S within the spectral knee range, and (ii) Alfvén vor-
tices are observed for not too large ⇥, ⇥<3 (Alexandrova et

al., in preparation4).

3 The Alfvén vortex and its spectral properties

The Alfvén vortices are multi-scale nonlinear structures and

one may wonder how they can influence the turbulent spec-

trum (M. Berthomier, private communication, 2006), even

outside the observed spectral “knee”.

In this section, we begin by a short review of the main

theoretical features of the model of incompressible Alfvén

vortex (Petviashvili and Pokhotelov, 1992; Kadomtsev and

Pogutse, 1974), since it is not so well known in the space

physics community. Second, we analyze the spectra of two

topologically independent vortex solutions, monopole and

dipole. Finally, we discuss the spectral properties of a pe-

riodic vortex network.

3.1 Alfvén vortex solutions

The Alfvén vortex is one of the non-linear solutions of the

ideal incompressible MHD equations. It is characterized by

magnetic field and velocity fluctuations mostly perpendicular

to the unperturbed magnetic fieldB0 (taken here as parallel to

the z direction), ⌅Bz�⌅B✏ and ⌅Vz�⌅V✏; they have a slow
time dependence, ⌘t�◆ci , and their space variations verify

⌘z�✏. Their amplitude �⌥⌅B✏/B0 is assumed to be small

although finite, 0<�<1 and they satisfy the following scaling

relations:

⌘z

✏
⌥ ⌘t

VA✏
⌥ ⌅Bz

⌅B✏
⌥ ⌅Vz

⌅V✏
⌥ ⌅B✏

B0
⌥ ⌅V✏

VA
⌥ �. (6)

The transverse fluctuations can then be described by two

scalar functions, the parallel component of the vector poten-

tial Az and a flux function ↵

⌅B✏ = Az ⇥ z, ⌅V✏ = z⇥ ↵ (7)

(in the following the symbol ⌅ will be omitted).

For the scalar variables Az and ↵ the MHD equations

 (⌘t + V · )V = �p + 1

4�
( ⇥ B) ⇥ B (8)

⌘tB =  ⇥ (V⇥ B) (9)

 · V = 0 ;  · B = 0 (10)

4Alexandrova, PhD thesis, 2005.

reduce to two non-linear scalar equations (Kadomtsev and

Pogutse, 1974; Strauss, 1976; Petviashvili and Pokhotelov,

1992), the conservation of the momentum along z

⌘t2
✏↵+{↵, 2

✏↵}= 1

4� 
{Az, 2

✏Az}�
B0

4� 
⌘z2

✏Az (11)

and the Maxwell-Faraday equation in the plane perpendicu-

lar to z

⌘tAz + B0⌘z↵ + {↵, Az} = 0. (12)

Here the notation {., .} corresponds to the Poisson bracket (or
the Jacobian)

{a, b}=⌘xa⌘yb�⌘ya⌘xb⌅(a⇥b)·z.
These equations can be written in dimensionless form,

using new variables t=◆ci t , r✏ = r✏/ i , z=z/(c/�pi),

 = / 0, ⇣=↵/( 2i ◆ci), A=AzVA/(B0 
2
i ◆ci)

dt2
✏⇣ = {A, J } � ⌘zJ (13)

dtA + ⌘z⇣ = 0 (14)

where J=2
✏A is the longitudinal current and

dt⌅⌘t+V✏·✏.

The Alfvén vortices are solutions which are localized in a

plane nearly perpendicular to z and propagate with a speed

u in this plane while conserving their shape. Choosing the

variables in the vortex plane x and ⇧, with

⇧ = y + �z � ut, � = tan(�), (15)

� being the angle between the normal to the plane (x, ⇧)

and B0, we arrive to a two dimensional problem. In the new

variables (x, ⇧) the Eqs. (13) and (14) become

{⇣ � ux, 2
✏(⇣ � ux)} = {A � �x, J } (16)

{⇣ � ux, A � �x} = 0 (17)

with the new Poisson bracket {a, b}=⌘xa⌘⇧b�⌘⇧a⌘xb.

Equation (17) means that (⇣�ux) and (A��x) are depen-

dent on one another:

A � �x = f (⇣ � ux) (18)

so that Eq. (16) leads to an equation for (⇣�ux)

2
✏(⇣ � ux) = f �(⇣ � ux)J + f1(⇣ � ux), (19)

containing two arbitrary functions, f and f1. There is, there-

fore, an infinite number of solutions of the system (16) and

(17) in the form of vortices.

Among this infinite set of solutions, the simplest Alfvén

vortex solution is localized in a circle of the radius a in the

plane (x, ⇧), and decays at infinity as a power law. It satisfies

a generalized Alfvén relation

⇣ = ⌥A, with ⌥ = u

�
(20)

www.nonlin-processes-geophys.net/15/95/2008/ Nonlin. Processes Geophys., 15, 95–108, 2008

Alfven vortices

5



Spectral properties of Alfvén vortices

a-1 a-1

§ Spectral knee at k=a-1 ; power law spectra above it 
§ Monopole ÞdB2~k-4 (due to discontinuity of the current)
§ Dipole ÞdB2~k-6 (due to discont. of the current derivative)

Vortex radius a=1
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Fig. 2. The surface of the current J above the vortex plane (x, ⇧)

and the contours of the potential A (that coincide here with the field

lines) in this plane for the monopolar structure with the radius of

localization a=1 and angle �=0.

where � and u can be zero only simultaneously. Its current

density J is a linear function of A��x inside a circle of ra-

dius a and vanishes outside
�

J = �k2(A � �x � c), r < a

J = 0, r ⌃ a
(21)

where k and c are constants. This solution is
⇥
⌅

⇤
A = A0(J0(kr) � J0(ka)) � 2�x

kr

J1(kr)

J0(ka)
+ �x, r < a

A = a2 �x
r2

, r ⌃ a.
(22)

Here A0 is a constant amplitude, J0 and J1 are the Bessel

functions of 0th and 1st order respectively, r=
⌥

x2+⇧2 is

the radial variable in the plane of the vortex.

The continuity of the solution (22) in r=a requires that

the parameter k and the radius a be coupled by the following

dispersion relation

J1(ka) = 0. (23)

This relation ensures the continuity of the magnetic field

B✏=(Bx, B⇧)=(⌘⇧A, �⌘xA) in r=a as well as a vanishing

divergence of B✏ everywhere.
Going back to the 3-D problem we must respect the fol-

lowing conditions: since ⌘z�✏ has to be satisfied, the an-
gle must be small, �⌥⌘z/✏⌥�. Similarly, the velocity u

must be also small in order to satisfy the condition ⌘t�◆ci ,

i.e. u⌥⌘t /◆ci⌥�. In principle, ⌥ is arbitrary, but of the order

of 1.

The Alfvén vortex solution (22) is the analogue of the in-

compressible unmagnetized hydrodynamic vortex solution,

and as in hydrodynamics, we distinguish here to types of vor-

tices: monopole and dipole.

The monopolar vortex solution correspond to the case with

�=0 (u=0), i.e., when the projection of the mean field to

Fig. 3. The same as Fig. 2 but for the bipolar vortex structure with

a=1, �=5⇤, here the current and field lines are symmetric with
respect to the line x=0 as far as the amplitude of the monopolar
part of the vortex is chosen to be A0=0.

the vortex plane is zero. This vortex is at rest in the plasma

frame. It corresponds to a field-aligned force-free current

localized within a circle of the radius a
�

A = A0(J0(kr) � J0(ka)), r < a

A = 0, r ⌃ a.
(24)

The monopole has the current J and the field lines as is

shown in Fig. 2. The contours of its magnetic field com-

ponents are shown in Fig. 4 (upper panels).

As soon as � �=0 (u�=0), the general solution (22) describes
the dipolar vortex. It is not stationary in the plasma as

the monopole, but propagates with velocity u along the ⇧-

direction, the direction of the mean field projection on the

vortex plane. The current of the dipolar vortex and its field

lines are presented in Fig. 3. Here the amplitude of monopo-

lar part A0 is chosen to be zero, otherwise A, J and the mag-

netic field lines are no more symmetric with respect to the

vortex center. The contours of its magnetic field components

are shown in Fig. 4 (lower panels).

Thus monopolar and dipolar vortices are topologically dif-

ferent and there is no continuous transition between them.

These differences reflect themselves in the Fourier spectra of

these two vortex types.

3.2 Power spectra of monopole and dipole

Suppose now that a magnetic probe moves in space, along

the x-axis with a constant velocity and a distance of closest

approach to the vortex axis ⇧. Figure 5 (upper panels) shows

the “measured” Bx-profiles of monopole and dipole vortex

structures, for ⇧=�0.2a. The lower panels of Fig. 5 show
the power spectral densities (PSD) of these signals calculated

via Fourier (solid lines) and via the Morlet Wavelet Trans-

forms (empty circles). The power spectra of both, monopole

and dipole, have a knee around the wave vector k = 1,

Nonlin. Processes Geophys., 15, 95–108, 2008 www.nonlin-processes-geophys.net/15/95/2008/
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Turbulence in space plasmas

B0plasma (MHD)

Presence of a mean magnetic field B0⇒ anisotropy of turbulent fluctuations 

hydrodynamics



Anisotropy of turbulence in the magnetosheath

[Alexandrova, Lacombe, and Mangeney, 2008, AnGeo]



If Taylor hypothesis (Vj<< V) is verified Þ variation of field-flow angle allows to resolve 
slab fluctuations while V is || to B and 2D fluctuations while V is ^ to B. [Bieber et al., 
1996; Horbury et al., 2008; Mangeney et al., 2006, Alexandrova et al. 2008, …]
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k-anisotropy of turbulent fluctuations
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k-anisotropy of turbulent fluctuations

2D fluctuations while V is ^ to B
[Mangeney et al., 2006, Alexandrova et 
al. 2008]
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[Alexandrova, Lacombe, Mangeney, 2008]



MHD scales: inertial
range~ Kolmogorov

Ion scales

[Leamon et al,1998] Wind/MAG 

Dissipation 
range ~ exp

HD

1. Large (MHD) scales: f-5/3 spectrum 
2. There exists a spectral “break” close to ion scales Þ
§ starting point of a small scale cascade or onset of dissipation.
§ If dissipation range ÞWhy a power law and not an exponential cut-off ?
§Helios shows f-2.8 spectrum between ion and electron scales [1983]. 

Solar wind turbulence 

[Denskat et al., 1983]



12

Cluster mission ESA/NASA, 4 s/c, since 2000

Magnetosheath

Solar wind

§ Cluster is in the free solar wind when the field/flow angle is quasi-perpendicular (QBV > 65o)
§Otherwise, Cluster is connected to the bow-shock => shock physics and not solar wind turbulence.  
§ Thus, with Cluster we can resolve kperp fluctuations
§ STAFF (LPP/LESIA) is the most sensitive instrument by today to measure kinetic plasma scales

B



[Alexandrova et al. 2009, PRL; 2013, SSR] 

MHD Ion 
scales

Electron
scales

Turbulent spectrum from MHD to electron scales

§ Superposition of different spectra at sub-ion scales seems to indicate general 
behaviour: spectrum ~kperp

-2.8

§ End of the cascade? Dissipation scales?
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⇢e =
Vth,e

2⇡fce
<latexit sha1_base64="bIJa+IDzv+a7f5gT/55bwmz2NBc=">AAAB/3icbZDNSgMxFIUz/tbWn1Fx5SZYBVd1IoJuhKIblxWsLbTDkEnTNjSTDEmmUIaCr+LGhYK4Elz7Bu58EF2bdrrQ1gOBj3Pv5d6cMOZMG8/7dObmFxaXlnMr+cLq2vqGu7l1q2WiCK0SyaWqh1hTzgStGmY4rceK4ijktBb2Lkf1Wp8qzaS4MYOY+hHuCNZmBBtrBe5OL0ibqisDOoTnEB1lHLhFr+SNBWcBTaBY3v96fe8XviuB+9FsSZJEVBjCsdYN5MXGT7EyjHA6zDcTTWNMerhDGxYFjqj20/H5Q3hgnRZsS2WfMHDs/p5IcaT1IAptZ4RNV0/XRuZ/tUZi2md+ykScGCpItqidcGgkHGUBW0xRYvjAAiaK2Vsh6WKFibGJ5W0IaPrLs1A7LqGTEkLXNo4LkCkHdsEeOAQInIIyuAIVUAUEpOAePIIn5855cJ6dl6x1zpnMbIM/ct5+AITRmWw=</latexit>

k⇢e = 1/⇢e

!obs = k? ·V = k?V cos(⇥kV ) = k?V sin(⇥V B)



[Alexandrova et al. 2009, PRL] Cluster/FGM+STAFF data

Dissipation scale?

Quasi-stationary turbulence
§ energy transfer rate e = energy dissipation rate ed
§ e = h3 ld -4 , where ld is dissipation scale, h is viscosity
§ amplitude of the spectrum P0~e2/3~ ld -8/3

`d ⇠ ⇢e

?
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Universal Kolmogorov’s function:

§ Assumption: h=Const
§ !ri & !li - normalizations are not efficient for collapse
§ !re normalization bring the spectra close to each other 

[Alexandrova et al., 2009, PRL]`d ⇠ ⇢e

Dissipation scale in the solar wind?

with dissipation scale ⇤d = ⇥i,e,�i,e

Let us try to apply this kind of normalization for solar wind spectra 
and for different candidates for the dissipation scale:  

E(k)⇥d/�
2 = F (k⇥d)
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Larger statistical study with Cluster/STAFF
[Alexandrova et al., 2012, APJ]

`d ⇠ ⇢e

[Chen, et al., 1993, PRL] dissipation range spectrum in fluids: 
<latexit sha1_base64="gKJW0gI2Lci2CWuocnxTMl88Gao=">AAACD3icbVDLSgNBEJz1GeNr1aOXISGQIAm7IuhFiIrgMYIxgWwMs5NOMuzsg5lZMSz5Ai8e/BEvHhTEq1dv+Rsnj4MmFjQUVd10d7kRZ1JZ1tBYWFxaXllNraXXNza3ts2d3VsZxoJClYY8FHWXSOAsgKpiikM9EkB8l0PN9S5Gfu0ehGRhcKP6ETR90g1Yh1GitNQyc5d5r4BP8Rn27pKiQ3jUIwPswEOU5IueA5y32oVBy8xaJWsMPE/sKcmWM87B87Dcr7TMb6cd0tiHQFFOpGzYVqSaCRGKUQ6DtBNLiAj1SBcamgbEB9lMxu8McE4rbdwJha5A4bH6eyIhvpR939WdPlE9OeuNxP+8Rqw6J82EBVGsIKCTRZ2YYxXiUTa4zQRQxfuaECqYvhXTHhGEKp1gWodgz748T2qHJfuoZNvXOo5zNEEK7aMMyiMbHaMyukIVVEUUPaIX9IbejSfj1fgwPietC8Z0Zg/9gfH1A+rUnZY=</latexit>

E(k) = Ak�↵ exp (�k`d)
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General spectrum at kinetic scales

§ For different solar wind conditions we find a 
general spectrum with “fluid-like” roll-off 
spectrum at electron scales (dissipation)

§ Electron Larmor radius seems to play a role 
of the dissipation scale in collisionless solar 
wind [Alexandrova et al., 2009 PRL, 2012 APJ]

§ k-anisotropy at kinetic scales : 
k_perp >> k_||  [Lacombe et al., 2017, Matteini
et al. 2020] 

E(k) = Ak�8/3 exp(�k�e)
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Helios turbulent spectrum & preliminary results of PSP 

[Alexandrova, et al. 2021 PRE]
[Master thesis of Jessica Martin, June 2021]
The same spectral shape is observed at 0.09 AU (PSP) 
as at 0.3 AU (Helios) and at 1 AU (Cluster). 



Dissipation range and ld in the solar wind

19

§ The same form of spectrum at 1 au (Cluster), 0.3 (Helios) and at 0.09 au (PSP) 
in the Heliosphere => general for space plasmas? 

§ The e/m cascade ends onto the electrons with re ~ dissipation scale ld. 

3344 spectra

1 AU 

0.3 AU 

0.09 AU re
rere



Solar wind turbulence : widely accepted picture 
§ Inertial range: Alfven waves propagating from the Sun, Critically Balanced turbulence (tA =tNL)
§ Ion transition: Alfven waves become Kinetic Alfven Waves (KAWs), e.g., Schekochihin et al., 09
§ Sub-ion scales: Critically Balanced KAW turbulence (tKAW ~ tNL), e.g., Boldyrev and Perez 12
§Dissipation: Landau damping of KAWs, e.g., Howes et al. 11, Passot & Salem 15, Schreiner & Saur, 17

Linear dispersion of KAWs describes the 
data [Sahraoui et al. 10, Roberts et al., 13]

Compressibility in agreement with 
KAWs [Lacombe et al. 17, Groselji
et al. 19, Matteini et al. 20]

This picture is based on mean properties of turbulent flows, e.g.,:
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Spectra are in agreement 
with Critical Balance

Intermittency in all this ? 20


