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Paris Temperature History in the Winter of 1984
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The datly range of reported temperatures (gray bars) and 24-hour highs (red ticks) and lows (blue ticks),
placed over the daily average high (faint red line) and low (faint blue line) temperature, with 25th to 75th
and 10th to 90th percentile bands.
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The Structure of Perpendicular Bow Shocks

M. M. Leroy,' D. Winskg, C. C. GoopricH. C. S. Wu, AND K. PAPADOPOULOS

University of Maryland, College Park, Maryland 20742

A hybrid simulation model with kinetic ions, massless fluid electrons, and phenomenological

resistivity is used to study the perpendicular configuration of the bow shocks of the earth and other

planets. We investigate a wide range of parameters, including the upstream Mach number, electron
and ion beta (ratios of thermal to magnetic pressure), and resistivity. Electron beta and resistivity are
found to have little effect on the overall shock structure. Quasi-stationary structures are obtained at
moderately high ion beta (B; ~ 1), whereas the shock becomes more dynamic in the low ion beta, large
Mach number regime (B; ~ 0.1, M, > 8). The simulation results are shown to be in good agreement
with a number of observational features of quasi-perpendicular bow shocks, including the morphology

™ of the reflected ion stream, the magnetic field profile throughout the shock, and the Mach number

dependence of the magnetic field overshoot.
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The Resolved Layer of a Collisionless, High g, Supercritical,
Quasi-Perpendicular Shock Wave
1. Rankine-Hugoniot Geometry, Currents, and Stationarity

1. D. Scupper,! A. MANGENEY,? C. Lacomsg,? C. C. Harvey,? T. L. AcGson,!
R. R. AnpErsow,? J. T. GosLing,* G. PascuMann,® anp C. T. RusseLL®

A comprehensive sel of experimental observations ol a high f (2.4), supercritical (M, = 3.8), quasi-
perpendicular (@,,, ~ 76°) bow shock layer is presented, and its local geometry, spatial scales, and
stationarity are assessed in a self-consistent, Rankine-Hugoniot-constrained frame of reference. Included
are spatial profiles of the ac and dc magnetic and electric fields, electron and proton fluid velocities,
current densities, eleciron and proton number densilies, temperatures, pressures, and partial densities of
the reflected protons. The transformation of the apparent time scales to the actual spatial scales is
performed with unprecedented accuracy. The obscrved layer profile is shown to be nearly phase standing
and one dimensional in a Rankine-Hugoniot frame, empirically deiermined by the magnetofiuid parame-
ters outside the layer proper. One or both of these properties appear to collapse at the time resolution of
1.5 s in the specific geometry considered in thiz study. Several pieces of evidence are used to show this
stationarity: (1) the similarity of the average magnetic structures seen on the two ISEE spacecraft; (2) the
close agreement between the eleciric currents direclly determined from the plasma data and those
inferred from the magnetic data assuming the layer is one dimensional and time stationary; (3) the close
agreement of the empirically determined scale lengths of the most prominent substructures with those
determined by numerical simulations and previous laboratory studies; and (4) the close agreement
between the theoretical Rankine-Hugoniot-determined normal plasma pressure jump and that of the
observed electron and proton fluids. The resolved cross-field electrical currents (with empirical error
estimates) are observed to peak within the main magnetic ramp at a level well below the first stabilization
threshold for ion acoustic turbulence suggested for low J§ shocks by Galeev (1976); clear evidence is also
provided for smaller parallel currents throughout the main ramp and overshoot, with a predominant
sense as i the shock electric field has caused the lighter electrons to lead the ions along the local
magnetic field direction. The width of the shock depends on what structures are used to define it. The
upstream pedestal or “foot” is nearly two upstream ion skin depths wide, but the main magnetic ramp is
only 1/5 the upstream ion skin depth and thus considerably smaller than “conventional wisdom” and
most simulations. The ramp scale length is directly corroborated by the current densities determined
from the plasma instruments.
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Platz 1. Electron and ion phase space variations throughout the vicinity of the shock. The phase space pictures of the electrons and ions are derived respectively from the Goddard VES and the
LANL/MPE fast plasma experiments. Shaded wedges above and below the magnetic profile indicate the time-averaging interval implied in the data collection of electron and ion phase space samples
of the insets above and below the magnetic trace, respectively.



An accurate determination of the local shock geometry is
crucial for (1) calculating the essential theoretical parameters
of the transition, {2) exhibiting the shock structure in a mean-
inglul way; and (3} converting the temporal observations into

a spatial profile, UnFurtunatr:ij, a determination of the shock
geometry from actual “noisy™ data is not trivial [Lepping and
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ISEE Sounder experiment

11



ISEE observations of radiation
at twice the solar wind plasma frequency

C. LACOMBE, C. C. HARVEY, §. HOANG, A. MANGENEY,
J. L. STEINBERG and D. BURGESS

UA 264 du CNRS, Observatoire de Paris, section de Meudon,
F-92195 Meudon Principal Cedex, France

Frequency (kHZz)
i ol M

e
Received January 13, 1987 ; revised June 23, 1987 ; accepted July 6, 1987. D
ABSTRACT. Radiation produced in the vicinity of the Earth's bow shock at twice the solar wind electron plasma 40
frequency f, is seen by both ISEE-1 and ISEL-3, respectively at about 20 samd abour 200 Ry from the Eacth, This
electromagnetic radiation is due to the presence, in the electron foreshock, of electrons reflected and acceleraged
at the Earth's bow shock, We show that the source is near the upstream boundary of the foreshock, the surface
where the magnetic field lines are tangent to the bow shock. A typical diameter of the source is 120-150
Ry For a source thickness of 1 R, the emissivity is between 0.5 and 20 % 10- 2 W m~ ?sr L. The angular size of 30
the source, seen by ISEE-3, is increased by scattering of the 2f, radio waves on the solar wind density
Muctuations. We examine whether the bandwidth and directivity predicted by current source models are
consistent with our observations,
20
Annales CGeophysicae, 1988, 6, (1), 113-128.
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We conclude that the 2 f, radiation source is localized \ X B’
on the surface generated by the field lines tangent to

the bow shock, out to distances of at least 20

Ry from the contact points with the shock. It is not

generated in the whole foreshock. An upper limit of

the source thickness is about 1 Rz. A typical dimen-

sion of the source is 60 Rj.
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ISEE observations of radiation at twice the solar wind plasma frequency.

Show affiliations
Lacombe, C. ; Harvey, C. C.; Hoang, 5. ; Mangeney A.; Steinberg, J. L. ; Burgess, D. @
Oservations of radiation produced in the vicinity of the earth's bow shock at twice the solar wind electron plasma frequency have been
obtained by ISEE-1 at about 20 earth radii and by ISEE-2 at about 200 earth radii from the earth. The source of this electromagnetic
radiation is shown to be near the upstream boundary of the foreshock, the surface where the magnetic field lines are tangent to the

bow shock. For a source of thickness of 1 earth radius, the emissivity is found to be 0.5-20 x 10 to the -22nd W/cu m per sr.
Observations are compared with the predictions of current source models.

Publication: Annales Geophysicae (ISSN 0980-8752), vol. 6, Feb. 1988, p. 113-128.
Pub Date: February 1968

Bibcode: 1988AnGeo__ 6.113L @
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Simultaneous observation of fundamental
and second harmonic radio
emission from the terrestrial foreshock

D. Burgess*, C. C. Harveyt, J.-L. Steinbergf
& C. Lacombef

* Mullard Space Science Laboratory, Dorking, Surrey RH5 6NT, UK
t DESPA, Observatoire de Paris-Meudon, 92195 Meudon, France

Reprinted from Nature, Vol. 330, No. 6150, pp. 732-735, 24 December 1987
© Macmillan Magazines Lid., 1987
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Electron acceleration by mirror reflection from
bow shock - 1984

A theory of energization of solar wind electrons by the NO SOURCES FOUND
Earth's bow shock.

Show affiliations

Leroy, M. M. ; Mangeney, A.

The present theory for the reflection and energization of incoming solar wind electrons
by the earth’'s bow shock is based on the essentially adiabatic mirror reflection of
incident electrons by the rising magnetic field magnitude of the shock transition region.
Expressions for the density, flux, energy/charge, temperature anisotropy, and average
pitch angle of the reflected energetic electrons are derived. It is suggested that the
theory may be applied to interplanetary shocks, theta-pinch laboratory experiments,
and solar type llI-burst radiation emission containing a herringbone structure.

Publication: Annales Geophysicae (ISSN 0755-0685), vol. 2, July-Aug.
1984, p. 449-456.

Pub Date: August 1984
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Electron acceleration at quasi-perpendicular shocks in sub- and
supercritical regimes: 2D and 3D simulations

25 7
D. Trotta“* and D. Burgess .
Queen Mary University of London, School of Physics and Astronomy, London E1 4NS, UK
2 5
4
1.5 3
2
1 1
25 7
6
15 §
2 5
=10 4
[\
15 3
5 L
2
0 . A | |
0 20 40 60
y [di]

Figure 1. Magnetic field intensity plots for low (left) and high (right) Mach number shocks (M = 2.9 and 6.6, respectively). Top panels correspond to cuts of
3D data along z = 10 d;. The bottom panels correspond to cuts along the red dashed lines in the plots above. In both cases, the upstream 6, 1s 87°.
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Space or Time?
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An accurate determination of the local shock geometry is
crucial for (1) calculating the essential theoretical parameters
of the transition, {2) exhibiting the shock structure in a mean-
inglul way; and {3) converting the temporal observations into
a spatial profile. Unfortunately, a determination of the shock
gc:umctrj from actuar maisy" data 15 not trivial [Lepping and

Scudder et al 1986
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Cassini
Ma = 74, 9Bn =61°

Cluster
Ma=39, 9Bn=85°

Comparing Cluster and Cassini
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Reflected ions — continuously present
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Space or Time?

If a shock is a steady structure with waves on top ....
 Which is better — space or time?
* But what controls the shock speed seen by s/c?

* For high beta — shock is more gasdynamic
* |sthere a selection bias?
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